
poll Documentation
Release 1.0

Benjamin Hodgson

March 26, 2016

Contents

1 Polling 3

2 Retrying 5

3 Circuit Breaker 7

4 Table of contents 9
4.1 Reference . 9

5 Indices and tables 13

Python Module Index 15

i

ii

poll Documentation, Release 1.0

Utilities for polling, retrying, and exception handling, inspired by Polly.

Contents 1

https://github.com/michael-wolfenden/Polly

poll Documentation, Release 1.0

2 Contents

CHAPTER 1

Polling

When you’re waiting for a long-running process to become complete, it’s often necessary to poll an external system to
determine whether the operation is complete.

Here is a function which retries a Web request (using the requests library) every second until the resource exists,
up to a maximum of 15 seconds:

from poll import poll
import requests

@poll(lambda response: response.status_code != 404, timeout=15, interval=1)
def wait_until_exists(uri):

return requests.get(uri)

There’s also a non-decorator form available, for when you want the user of a function to decide whether to poll the
operation. The following code is equivalent to the function above:

from poll import poll_
import requests

def wait_until_exists(uri):
poll_(

lambda: requests.get(uri),
lambda response: response.status_code != 404,
timeout=15,
interval=1

)

3

poll Documentation, Release 1.0

4 Chapter 1. Polling

CHAPTER 2

Retrying

When an operation may occasionally fail, it’s often useful to retry the operation in the hope that it will succeed the
next time.

Here’s an approximately equivalent function to the above example, which catches the exception thrown by
raise_for_status and retries until the response has a 2xx status code:

from poll import retry
import requests

@retry(requests.HTTPError, times=15, interval=1)
def wait_until_succeeds(uri):

response = requests.get(uri)
response.raise_for_status()
return response

As with polling, you can use the ‘underscored’ version of retry to add retry logic to a function which doesn’t already
have it:

from poll import retry_
import requests

def get_or_raise(uri):
response = requests.get(uri)
response.raise_for_status()
return response

def wait_until_succeeds(uri):
retry_(

lambda: get_or_raise(uri),
requests.HTTPError,
times=15,
interval=1

)

5

poll Documentation, Release 1.0

6 Chapter 2. Retrying

CHAPTER 3

Circuit Breaker

Simple retry logic often gets the job done, but it can cause problems. If your calls to an external service are failing
because the external service is struggling under load, you don’t want to exacerbate the problem by hammering it with
retry attempts.

The circuit breaker pattern is a strategy for backing off, to avoid causing harm to external systems by retrying. If a
call fails a certain number of times, the circuit breaker ‘trips’ and blocks any future calls.

After a time, the circuit enters the ‘half-broken’ state where it is ready to make one real call to test if the external service
is functioning again. If this one real call fails, the circuit is broken again; otherwise, normal service is resumed.

Here’s another version of our example, which blocks future attempts for sixty seconds after three calls to attempt
fail:

from poll import circuitbreaker
import requests

@circuitbreaker(requests.HTTPError, threshold=3, reset_timeout=60)
def attempt(uri):

response = requests.get(uri)
response.raise_for_status()
return response

For a more detailed explanation of Circuit Breaker, see Martin Fowler’s article:
http://martinfowler.com/bliki/CircuitBreaker.html

7

http://martinfowler.com/bliki/CircuitBreaker.html

poll Documentation, Release 1.0

8 Chapter 3. Circuit Breaker

CHAPTER 4

Table of contents

4.1 Reference

Utilities for polling, retrying, and exception handling.

exception poll.CircuitBrokenError(message=’‘, time_remaining=0)
Exception to indicate that the operation was not carried out because the circuit is broken.

poll.circuitbreaker(ex, threshold, reset_timeout, on_error=<function <lambda>>)
Decorator for functions which should ‘back off’ using the Circuit Breaker pattern:
http://martinfowler.com/bliki/CircuitBreaker.html

This implementation of Circuit Breaker uses a ‘leaky bucket’ form of failure counting. For example, if threshold
is 3 and reset_timeout is 60, then the circuit will be broken if the call fails three times within a sixty-second
period. The circuit breaker is lenient towards intermittent failures.

Parameters

• ex (class or iterable) – The class of the exception to catch, or an iterable of classes.

• threshold (int) – The number of times a failure can occur before the circuit is broken.

• reset_timeout (float) – The length of time, in seconds, that a broken circuit should
remain broken.

• on_error (function) – A function to be called when the decorated function throws an
exception.

If on_error() takes no parameters, it will be called without arguments.

If on_error(exception) takes one parameter, it will be called with the exception that
was raised.

A typical use of on_error would be to log the exception.

Returns The final return value of the function f.

Raises CircuitBrokenError – The operation was not carried out because the circuit is broken.

poll.exec_(f, ex, until, times=3, timeout=15, interval=1, on_error=<function <lambda>>, *args,
**kwargs)

General function for polling, retrying, and handling errors.

Parameters

• f (function) – The function to retry

• ex (class or iterable) – The class of the exception to catch, or an iterable of classes

9

http://martinfowler.com/bliki/CircuitBreaker.html
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#float

poll Documentation, Release 1.0

• until (function) – The success condition. until should be a function; it will be called
with the return value of the function. until(x) should return True if the operation was
successful (and retrying should stop) and False if retrying should continue.

• times (int) – The maximum number of times to retry

• interval (float) – How long to sleep in between attempts in seconds

• on_error (function) – A function to be called when f throws an exception.

If on_error() takes no parameters, it will be called without arguments.

If on_error(exception) takes one parameter, it will be called with the exception that
was raised.

If on_error(exception, retry_count) takes two parameters, it will be called
with the exception that was raised and the number of previous attempts (starting at 0).

A typical use of on_error would be to log the exception.

Any other arguments are forwarded to f.

Returns The final return value of the function f.

Raises TimeoutError – The call did not succeed within the specified timeout.

poll.poll(until, timeout=15, interval=1)
Decorator for functions that should be repeated until a condition or a timeout.

Parameters

• until (function) – The success condition. until should be a function; it will be
called with the return value of the function. until should return True if the operation
was successful (and retrying should stop) and False if retrying should continue.

• timeout (float) – How long to keep retrying the operation in seconds

• interval (float) – How long to sleep between attempts in seconds

Returns The final return value of the decorated function

Raises TimeoutError – The condition did not become true within the specified timeout.

poll.poll_(f, until, timeout=15, interval=1, *args, **kwargs)
Repeatedly call a function until a condition becomes true or a timeout expires.

Parameters

• f (function) – The function to poll

• until (function) – The success condition. until should be a function; it will be
called with the return value of the function. until should return True if the operation
was successful (and retrying should stop) and False if retrying should continue.

• timeout (float) – How long to keep retrying the operation in seconds

• interval (float) – How long to sleep in between attempts in seconds

Any other arguments are forwarded to f.

Returns The final return value of the function f.

Raises TimeoutError – The condition did not become true within the specified timeout.

poll.retry(ex, times=3, interval=1, on_error=<function <lambda>>)
Decorator for functions that should be retried upon error.

Parameters

10 Chapter 4. Table of contents

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float

poll Documentation, Release 1.0

• ex (class or iterable) – The class of the exception to catch, or an iterable of classes

• times (int) – The maximum number of times to retry

• interval (float) – How long to sleep in between attempts in seconds

• on_error (function) – A function to be called when the decorated function throws an
exception.

If on_error() takes no parameters, it will be called without arguments.

If on_error(exception) takes one parameter, it will be called with the exception that
was raised.

If on_error(exception, retry_count) takes two parameters, it will be called
with the exception that was raised and the number of previous attempts (starting at 0).

A typical use of on_error would be to log the exception.

Returns The return value of the decorated function

Raises TimeoutError – The function did not succeed within the specified timeout.

poll.retry_(f, ex, times=3, interval=1, on_error=<function <lambda>>, *args, **kwargs)
Call a function and try again if it throws a specified exception.

Parameters

• f (funciton) – The function to retry

• ex (class or iterable) – The class of the exception to catch, or an iterable of classes

• times (int) – The maximum number of times to retry

• interval (float) – How long to sleep in between attempts in seconds

• on_error (function) – A function to be called when f throws an exception.

If on_error() takes no parameters, it will be called without arguments.

If on_error(exception) takes one parameter, it will be called with the exception that
was raised.

If on_error(exception, retry_count) takes two parameters, it will be called
with the exception that was raised and the number of previous attempts (starting at 0).

A typical use of on_error would be to log the exception.

Any other arguments are forwarded to f.

Returns The final return value of the function f.

Raises TimeoutError – The function did not succeed within the specified timeout.

4.1. Reference 11

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#float

poll Documentation, Release 1.0

12 Chapter 4. Table of contents

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

13

poll Documentation, Release 1.0

14 Chapter 5. Indices and tables

Python Module Index

p
poll, 9

15

poll Documentation, Release 1.0

16 Python Module Index

Index

C
circuitbreaker() (in module poll), 9
CircuitBrokenError, 9

E
exec_() (in module poll), 9

P
poll (module), 9
poll() (in module poll), 10
poll_() (in module poll), 10

R
retry() (in module poll), 10
retry_() (in module poll), 11

17

	Polling
	Retrying
	Circuit Breaker
	Table of contents
	Reference

	Indices and tables
	Python Module Index

