

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	poll 1.0 documentation

poll

Utilities for polling, retrying, and exception handling,
inspired by Polly [https://github.com/michael-wolfenden/Polly].

Polling

When you’re waiting for a long-running process to become complete,
it’s often necessary to poll an external system to determine whether
the operation is complete.

Here is a function which retries a Web request (using the requests library)
every second until the resource exists, up to a maximum of 15 seconds:

from poll import poll
import requests

@poll(lambda response: response.status_code != 404, timeout=15, interval=1)
def wait_until_exists(uri):
 return requests.get(uri)

There’s also a non-decorator form available, for when you want
the user of a function to decide whether to poll the operation.
The following code is equivalent to the function above:

from poll import poll_
import requests

def wait_until_exists(uri):
 poll_(
 lambda: requests.get(uri),
 lambda response: response.status_code != 404,
 timeout=15,
 interval=1
)

Retrying

When an operation may occasionally fail,
it’s often useful to retry the operation in the hope
that it will succeed the next time.

Here’s an approximately equivalent function to the above example,
which catches the exception thrown by raise_for_status
and retries until the response has a 2xx status code:

from poll import retry
import requests

@retry(requests.HTTPError, times=15, interval=1)
def wait_until_succeeds(uri):
 response = requests.get(uri)
 response.raise_for_status()
 return response

As with polling, you can use the ‘underscored’ version
of retry to add retry logic to a function which doesn’t already have it:

from poll import retry_
import requests

def get_or_raise(uri):
 response = requests.get(uri)
 response.raise_for_status()
 return response

def wait_until_succeeds(uri):
 retry_(
 lambda: get_or_raise(uri),
 requests.HTTPError,
 times=15,
 interval=1
)

Circuit Breaker

Simple retry logic often gets the job done, but it can cause problems.
If your calls to an external service are failing because the external
service is struggling under load, you don’t want to exacerbate
the problem by hammering it with retry attempts.

The circuit breaker pattern is a strategy for backing off, to avoid
causing harm to external systems by retrying. If a call fails a
certain number of times, the circuit breaker ‘trips’ and blocks any
future calls.

After a time, the circuit enters the ‘half-broken’ state where it
is ready to make one real call to test if the external service is
functioning again. If this one real call fails, the circuit is broken
again; otherwise, normal service is resumed.

Here’s another version of our example, which blocks future attempts
for sixty seconds after three calls to attempt fail:

from poll import circuitbreaker
import requests

@circuitbreaker(requests.HTTPError, threshold=3, reset_timeout=60)
def attempt(uri):
 response = requests.get(uri)
 response.raise_for_status()
 return response

For a more detailed explanation of Circuit Breaker, see Martin
Fowler’s article: http://martinfowler.com/bliki/CircuitBreaker.html

Table of contents

	Reference

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Benjamin Hodgson.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	poll 1.0 documentation

Reference

Utilities for polling, retrying, and exception handling.

	
exception poll.CircuitBrokenError(message='', time_remaining=0)

	Exception to indicate that the operation was
not carried out because the circuit is broken.

	
poll.circuitbreaker(ex, threshold, reset_timeout, on_error=<function <lambda>>)

	Decorator for functions which should ‘back off’ using the
Circuit Breaker pattern: http://martinfowler.com/bliki/CircuitBreaker.html

This implementation of Circuit Breaker uses a ‘leaky bucket’ form
of failure counting. For example, if threshold is 3 and
reset_timeout is 60, then the circuit will be broken if the call
fails three times within a sixty-second period. The circuit breaker
is lenient towards intermittent failures.

	Parameters:	
	ex (class or iterable) – The class of the exception to catch, or an iterable of classes.

	threshold (int [http://docs.python.org/library/functions.html#int]) – The number of times a failure can occur before
the circuit is broken.

	reset_timeout (float [http://docs.python.org/library/functions.html#float]) – The length of time, in seconds,
that a broken circuit should remain broken.

	on_error (function) – A function to be called when the
decorated function throws an exception.

If on_error() takes no parameters,
it will be called without arguments.

If on_error(exception) takes one parameter,
it will be called with the exception that was raised.

A typical use of on_error would be to log the exception.

	Returns:	The final return value of the function f.

	Raises CircuitBrokenError:

		The operation was
not carried out because the circuit is broken.

	
poll.exec_(f, ex, until, times=3, timeout=15, interval=1, on_error=<function <lambda>>, *args, **kwargs)

	General function for polling, retrying, and handling errors.

	Parameters:	
	f (function) – The function to retry

	ex (class or iterable) – The class of the exception to catch, or an iterable of classes

	until (function) – The success condition.
until should be a function; it will be called with
the return value of the function.
until(x) should return True if the operation was successful
(and retrying should stop) and False if retrying should continue.

	times (int [http://docs.python.org/library/functions.html#int]) – The maximum number of times to retry

	interval (float [http://docs.python.org/library/functions.html#float]) – How long to sleep in between attempts in seconds

	on_error (function) – A function to be called when f throws an exception.

If on_error() takes no parameters,
it will be called without arguments.

If on_error(exception) takes one parameter,
it will be called with the exception that was raised.

If on_error(exception, retry_count) takes two parameters,
it will be called with the exception that was raised and the
number of previous attempts (starting at 0).

A typical use of on_error would be to log the exception.

Any other arguments are forwarded to f.

	Returns:	The final return value of the function f.

	Raises TimeoutError:

		The call did not succeed
within the specified timeout.

	
poll.poll(until, timeout=15, interval=1)

	Decorator for functions that should be repeated until a condition
or a timeout.

	Parameters:	
	until (function) – The success condition.
until should be a function; it will be called with
the return value of the function.
until should return True if the operation was successful
(and retrying should stop) and False if retrying should continue.

	timeout (float [http://docs.python.org/library/functions.html#float]) – How long to keep retrying the operation in seconds

	interval (float [http://docs.python.org/library/functions.html#float]) – How long to sleep between attempts in seconds

	Returns:	The final return value of the decorated function

	Raises TimeoutError:

		The condition did not become true
within the specified timeout.

	
poll.poll_(f, until, timeout=15, interval=1, *args, **kwargs)

	Repeatedly call a function until a condition becomes
true or a timeout expires.

	Parameters:	
	f (function) – The function to poll

	until (function) – The success condition.
until should be a function; it will be called with
the return value of the function.
until should return True if the operation was successful
(and retrying should stop) and False if retrying should continue.

	timeout (float [http://docs.python.org/library/functions.html#float]) – How long to keep retrying the operation in seconds

	interval (float [http://docs.python.org/library/functions.html#float]) – How long to sleep in between attempts in seconds

Any other arguments are forwarded to f.

	Returns:	The final return value of the function f.

	Raises TimeoutError:

		The condition did not become true
within the specified timeout.

	
poll.retry(ex, times=3, interval=1, on_error=<function <lambda>>)

	Decorator for functions that should be retried upon error.

	Parameters:	
	ex (class or iterable) – The class of the exception to catch, or an iterable of classes

	times (int [http://docs.python.org/library/functions.html#int]) – The maximum number of times to retry

	interval (float [http://docs.python.org/library/functions.html#float]) – How long to sleep in between attempts in seconds

	on_error (function) – A function to be called when the decorated
function throws an exception.

If on_error() takes no parameters,
it will be called without arguments.

If on_error(exception) takes one parameter,
it will be called with the exception that was raised.

If on_error(exception, retry_count) takes two parameters,
it will be called with the exception that was raised and
the number of previous attempts (starting at 0).

A typical use of on_error would be to log the exception.

	Returns:	The return value of the decorated function

	Raises TimeoutError:

		The function did not succeed
within the specified timeout.

	
poll.retry_(f, ex, times=3, interval=1, on_error=<function <lambda>>, *args, **kwargs)

	Call a function and try again if it throws a specified exception.

	Parameters:	
	f (funciton) – The function to retry

	ex (class or iterable) – The class of the exception to catch, or an iterable of classes

	times (int [http://docs.python.org/library/functions.html#int]) – The maximum number of times to retry

	interval (float [http://docs.python.org/library/functions.html#float]) – How long to sleep in between attempts in seconds

	on_error (function) – A function to be called when
f throws an exception.

If on_error() takes no parameters, it will be called
without arguments.

If on_error(exception) takes one parameter,
it will be called with the exception that was raised.

If on_error(exception, retry_count) takes two parameters,
it will be called with the exception that was raised and the
number of previous attempts (starting at 0).

A typical use of on_error would be to log the exception.

Any other arguments are forwarded to f.

	Returns:	The final return value of the function f.

	Raises TimeoutError:

		The function did not succeed
within the specified timeout.

 Copyright 2015, Benjamin Hodgson.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	poll 1.0 documentation

 Python Module Index

 p

 			

 		
 p	

 	
 	
 poll	

 Copyright 2015, Benjamin Hodgson.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	poll 1.0 documentation

Index

 C
 | E
 | P
 | R

C

 	

 	circuitbreaker() (in module poll)

 	

 	CircuitBrokenError

E

 	

 	exec_() (in module poll)

P

 	

 	poll (module)

 	poll() (in module poll)

 	

 	poll_() (in module poll)

R

 	

 	retry() (in module poll)

 	

 	retry_() (in module poll)

 Copyright 2015, Benjamin Hodgson.
 Created using Sphinx 1.3.1.

 search.html

 Navigation

 		
 index

 		
 modules |

 		poll 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Benjamin Hodgson.
 Created using Sphinx 1.3.1.

_static/down-pressed.png

_static/comment-close.png

_static/up.png

_static/ajax-loader.gif

_static/file.png

_static/up-pressed.png

_static/minus.png

_static/down.png

_static/plus.png

_static/comment.png

_static/comment-bright.png

